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The properties of a dilute bidisperse particle-gas suspension under low Reynolds 
number, high Stokes number conditions are studied in the limit T ,  $7, using a 
perturbation analysis in the small parameter u ,  which is proportional to the ratio of 
timescales T,/T,. Here, 7, is the time between successive collisions of a particle, and 
r, is the viscous relaxation time. The leading-order distribution functions for the two 
species are isotropic Gaussian distributions, and are identical to the molecular 
velocity distributions in a two-component gas a t  equilibrium. Balance equations are 
written for the mean and mean-square velocities, using a distribution function that, 
is a small perturbation from the isotropic Gaussian. The collisional terms are 
calculated by performing an ensemble average over the relative configurations of the 
colliding particles, and the mean velocity and velocity variances are calculated 
correct to O(u2) by solving the balance equations. The difference in the mean 
velocities of the two species is O(u)  smaller than the mean velocity of the suspension, 
and the fluctuating velocity is O($) smaller than the mean velocity. 

1. Introduction 
Particle-gas suspensions are found in naturally occurring situations, such as dust 

and aerosol particles suspended in air, as well as in industrial applications, such as 
fluidized beds and pneumatic transport. The dynamics of these suspensions are 
influenced by particle inertia, gas inertia and viscosity, and hydrodynamic and 
collisional interactions between the particles. Owing to  the complexity of the system, 
i t  is difficult, in general, to calculate the distribution of particle velocities, and 
continuum theories have been used to describe the dynamics of fluidized beds. These 
theories treat the particle and gas phases as two continuous phases capable of 
exchanging momentum and energy. 

I n  his stability analysis of fluidized beds, Jackson (1963) included particle inertia, 
and assumed that the drag force is of the form D = p(n) (u-u). Here, P(n) is a 
function of number density, u is the mean fluid velocity and u is the mean velocity 
of the particle phase. This theor,y led to the conclusion that the homogeneous state 
of the fluidized bed is always unstable. More recent continuum theories (Didwania & 
Homsy 1982; Batchelor 1988) incoporate the particle interactions in the form of a 
‘particle pressure’ and a particle diffusivity and thereby obtain criteria for the 
stability of the homogeneous bed. In the kinetic theory of gases, the pressure is 
proportional to the mean-square of the fluctuating velocity of the molecules. By 
analogy, in particle-gas suspensions the particle pressure has been related to the 
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mean-square of the fluctuating velocities of the particles (Koch 1990; Jenkins & 
Richman 1985). 

In  this series of papers, we study the velocity distribution of a dilute bidisperse 
suspension of particles settling in a gas in the low Reynolds number, high Stokes 
number limit. The volume fraction of the particles, V ,  is small compared to 1. The 
Reynolds number is defined as Re = (p, Ua/r), and, in the low Reynolds number 
limit, the viscous forces are large compared to the inertial forces in the gas phase. The 
Stokes number is defined as St = (mU/(6.rcya2)), and, in the high Stokes number limit, 
the inertia of the particles is significant. Here, pg and 7 are the density and viscosity 
of the gas, m and a are the mass and diameter of the particle, and U is a characteristic 
particle velocity. Particles of density 1 gm/cm3 having a diameter between 10 and 
100 ,urn settling in air can be analysed using the low Reynolds number, high Stokes 
number approximation, since their Reynolds number varies between 8 x and 8, 
and their Stokes number varies between 1.473 and 1473. Moreover, the calculation 
of the velocity distribution in this limit is simplified by the following approximations : 
(i) the particle drag is given by Stokes law, (ii) the inertia of the gas can be neglected, 
and (iii) the particles interact only by solid-body collisions. 

The drag force on the particle is a linear function of its velocity a t  low Reynolds 
number, and is assumed to be independent of the volume fraction of the particles. It 
is shown in the Appendix to Kumaran & Koch (1993a, which will henceforth be 
referred to as Part 2), that the effect of hydrodynamic interactions is small compared 
to that of solid-body collisons in a dilute polydisperse suspension a t  sufficiently high 
Stokes number, and in this study we neglect the hydrodynamic interactions between 
particles. Hydrodynamic interactions play a significant role in the dynamics of 
monodisperse suspensions, and the stability criterion for these suspensions was 
ascertained by Koch (1990). The simple form of the drag force considered here makes 
it possible to incorporate the collisional interactions in a detailed fashion. This will 
help in gaining a better qualitative understanding of the effect of collisions on the 
velocity fluctuations in complex systems such as fluidized beds, where gas inertia and 
hydrodynamic interactions may also be significant. 

The conservation equation for the particle velocity distribution function is similar 
to the Boltzmann equation used in the kinetic theory of gases, except for the 
important difference that the drag force on a particle depends on its velocity. The 
conservation equation is a nonlinear, integro-differential equation, and, in general, is 
difficult to solve analytically. For the special case of a gas a t  equilibrium, the 
Maxwell-Boltzmann distribution of molecular velocities can be obtained as the 
analytical solution of the Boltzmann equation. This distribution is derived using the 
principle of detailed balancing which states that ,  at  the molecular level, for every 
collision that changes a particle velocity from v to v‘, there is an ‘inverse collision’ 
which changes the velocity of another particle from v‘ to v .  Therefore, the collision 
process does not change the density of particles in velocity space. It is shown in the 
Appendix that the principle of detailed balancing is not valid for the particle velocity 
distribution a t  steady state, since the viscous drag force is not divergence free in 
velocity space. As a result, it is difficult to obtain an analytical solution for the 
distribution function, except in asymptotic limits. 

The steady state of a bidisperse suspension differs from a two-component gas at 
equilibrium in one other respect. I n  a gas a t  equilibrium, the total energy of the 
molecular fluctuations is conserved. In  a bidisperse suspension, on the other hand, 
there is a force on the particles due to the difference between the mean velocity and 
the terminal velocity of the particles. The work done by this force acts as a source 
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of fluctuating energy. This source is balanced by the energy dissipation due t o  the 
viscous drag on the particles. Thus, there is a flux of energy through the system at 
steady state. The energy source is driven by the difference in terminal velocities in 
the vertical direction, and due to the directional nature of this source. the steady- 
state velocity distribution can be anisotropic. This is in contrast to the kinetic theory 
for gases near equilibrium, where the temperature, which is proportional to the 
mean-square fluctuating velocity, is isotropic, even though there may be directional 
temperature gradients. 

Particle collisions have been incorporated into the theories for the rapid shearing 
of granular materials (see, for example, Jenkins 1987). Here, the shearing of the 
material drives collisions between particles and acts as a source of fluctuating energy. 
The energy is dissipated due to inelastic collisions between particles. The suspension 
is analysed in the limit where the coefficient of restitution of the particles is close to 
1. In the limit, the dynamics of the particles resembles that of the molecules in a gas, 
whose equilibrium distribution is the Maxwell-Boltzmann distribution. The particle 
distribution is assumed to be an anisotropic Gaussian function, which is a small 
perturbation to the Maxwell distribution. The momentum and energy balance 
equations are derived, using this distribution, by averaging methods similar to those 
used in the kinetic theory of gases. 

I n  Parts 1 and 2, we calculate the velocity distribution function for particles 
settling in a gas in two asymptotic limits which are defined by the relative 
magnitudes of two timescales: (i) the viscous relaxation time, r,, which is the time 
it takes a particle to relax to its terminal velocity after a collision, and (ii) the collision 
time, re, which is the time between successive collisions of a particle. 

The limit r,  < rv, which corresponds to Xt V % 1, is studied in this paper. We use 
a perturbation analysis in the small parameter u ,  which is proportional to the ratio 
of timescales, 7,/7,. It will be shown in $ 2  that the small parameter u is also 
proportional to (8t V)-g. In this limit, a particle does not experience significant 
viscous deceleration between successive collisions. The deceleration can be neglected 
in the leading-order approximation, and it is shown that the leading-order 
distribution functions for the two species are the Maxwell-Boltzmann distribution 
with equal mean velocities. To calculate the moments of the velocity distribution, 
however, we need to take into account the small effects of the viscous drag. This is 
in contrast to a gas a t  equilibrium, where the temperature is specified as a 
thermodynamic property. Balance equations are derived using a slightly perturbed 
form of the distribution function, and these are solved to give the mean and mean- 
square velocities. The collisional terms in the balance equations are calculated using 
an ensemble averaging method discussed in $2.4. The analysis in $ 2  is restricted to 
suspensions of elastic particles, and suspensions of inelastic particles are studied in 

I n  Part 2, the limit r, < r,, which corresponds to the limit Xt V 4 1, will be 
analysed. I n  this limit, a particle relaxes to its terminal velocity between successive 
collisions. A distribution function that incorporates the first effects of collisions is 
derived by a perturbation analysis about the base state in which all the particles 
settle at their terminal velocities. In  Kumaran & Koch (1993b), we calculate the 
mean and mean-square velocities for values of St V between the two limits using an 
approximate form of the distribution function. 

3 3. 
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2. Suspension of elastic particles 
2.1. Velocity scales 

The system consists of particles of two species, I and 2, with masses m, and m2, radii 
a, and u2, and number densities n, and n2, respectively, settling under gravity in a 
quiescent gas. The drag force on a particle of species i is given by 

q = - Pr 4 (2.1) 

Here v,t is the particle velocity and pi is 6nya,. The superscript 1- is used for 
dimensional velocity and time variables, and the absence of the superscript indicates 
scaled variables. 

There are two mechanisms of energy transfer that influence the dynamics: the 
collisional mechanism, which channels energy from the mean flow into the velocity 
fluctuations, and the viscous mechanism, which dissipates the fluctuating energy. 
The rate of change of energy due to the collisional mechanism is inversely related to  
the collision time scale, rCy,  which is the time between successive collisions of a 
particle of species i with particles of species j. The collision time is related to the 
radius, number density and fluctuating velocity of the particles as follows: 

(2.2) 

Here, vd is the magnitude of the fluctuating velocity of the particles and d, is the sum 
of the radii of particles of species i andj .  The rate of dissipation of energy is inversely 
related to the viscous relaxation time T " ~ ,  which is the time it takes for a particle 
to relax to its terminal velocity after a collision. From (2.1), the viscous relaxation 
time is given by 

Tcrj = 1,"nj ndtj w t I .  

rvi = mi/,+ (2.3) 

To facilitate the perturbation analysis, we define a small parameter, u,  as the ratio 
of the collision and viscious timescales : 

u = Tc12/Tv1. (2.4) 

Note that the choice of the viscious relaxation time for species 1 and the collision 
time for collisions between particles of species 1 and 2 is arbitrary. Since the 
timescales of the two species are of the same order of magnitude, this choice does not 
affect the scalings in the problem. It is shown in the subsequent analysis that the 
mean velocities of the two species are equal to leading order, and the fluctuating 
velocity wi is O(u$v&), where v t  is the mean velocity of the suspension. Therefore, in 
terms of the mean velocity of the supension, u can be expressed as 

u = [n2 xd:z vf, 7 ~ ; .  (2.5) 

It can easily be verified from (2.5) that u is proportional to (st u-1, as indicated in 
the introduction. Note that the above scaling for the fluctuating velocity is valid only 
when (ui  wf) is small compared with the difference in the terminal velocity of the two 
species. When the difference in the terminal velocities is small compared with (u:v;tl), 
the fluctuating velocity will scale as the difference in the terminal velocities. The 
latter limit is analysed in Part 2. 

We shall now estimate the orders of magnitude of the difference in the mean 
velocities of the two species and the mean-square fluctuating velocities in terms of 
the small parameter u. The order of magnitude of the mean velocity a t  steady state 
is estimated by balancing the viscous and collisional rate of change of momentum in 
the suspension. The force on a particle of species i due to viscous drag is O[m, V ~ ~ / T , ~ ] ,  
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and the rate of change of momentum of the particle due to collisions is 
O[mi (~1,- w l , ) / ~ , ~ ~ ] .  Here, wf is the mean velocity of species i, and the difference in 
the mean velocities, W ~ , - W ~ , ,  drives the momentum transfer. At  steady state these 
two rates are equal, and the ratio ( W ~ ~ - V ~ ~ ) / W ~ ,  is O(u).  The leading-order mean 
velocities of the two species are equal to the mean velocity of the suspension, vL,  and 
the difference in the mean velocities is O(u) smaller than this mean velocity. Since 
momentum is conserved in collisions between particles, the mean velocity of the 
suspension at steady state can be determined from the condition that the sum of the 
gravitational and drag forces acting on all the particles is zero: 

where w i t  and vg, are the terminal velocities of the two species. The mean velocities 
of the two species are expressed as perturbation series about the mean velocity of the 
suspension : 

(2.7) 
The fluctuating velocity of the particles, cf, is defined as difference between the 

w,t, = wr, (1 + uw;,. 

particle velocity ub and the mean velocity of the suspension: 

ct = uf-wfe,. (2 .8)  
The order of magnitude of the fluctuating velocity is determined from the energy 
conservation equation. The leading-order vertical momentum conservation and total 
energy conservation equations are 

n,Pu,(Vlt -.t) + n2p-Z (4, -4J = 0, (2.9a) 

~ l ~ l ~ t ~ ~ i t - ~ f ~ + ~ - 2 ~ - 2 ~ ~ ~ ~ ~ , - ~ ~ ~ - ~ l ~ l  (c f2) -n2p2 (ci? = 0. (2.9b) 

The sum of the first two terms in the energy conservation equation (2.9b) is the 
product of the momentum conservation equation (2.9a) and the mean velocity of the 
suspension, wf. Therefore, the mean-square fluctuating velocities are much smaller 
than wg) and the leading-order fluctuating velocity is O ( d w ~ ) .  This confirms the 
scaling of the fluctuating velocity anticipated earlier in this section. 

In the subsequent analysis, the particle velocities are scaled by the fluctuating 
velocity vl = ui vL, and the time variable is scaled by rvl, the viscous relaxation time 
of species 1. The mean and terminal velocities are expressed as 

(2.10a, b) 

Here w,’ and wit are dimensionless O( 1) quantities. The scaled acceleration of a particle 
due to the viscous and gravitational forces is 

(2.11) 

Wl, = u - Q ( l +  uv;), wit = u-t wi wit. 

dc,/dt = 1:u-t (wit - l)ez - C ~ ] ( ~ ~ J T ~ ~ ) .  

2.2. Particle velocity distribution 
In this section, we calculate the distribution of velocities of the particles in the 
suspension. The dimensional velocity distribution function is defined as follows : 
fi(cl) dcf is the fraction of the particles of species i that have velocities in the 
differential volume dcl about cj in velocity space. The ensemble average of a function 
of particle velocity, /3,(ct), is 

(2.12) 
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The conservation equation for the distribution function is 
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(2.13) 

Here Vet. is the divergence operator in velocity space, a, f {/at+ is the net accumulation 
of particles in dcl due to collisions, and the first term on the right-hand side is the 
accumulation of particles in dcf due to the viscous and gravitational forces. In  the 
Boltzmann equation, the forces on the gas molecules are divergence free in velocity 
space, but in (2.13) the forces are not divergence free and the acceleration must be 
written within the divergence operator. The implications of this difference are 
discussed in the Appendix. 

Since the viscous relaxation time is large compared to the collision time, a particle 
does not decelerate much between successive collisions. The leading-order dynamics 
of the particles is similar to that of molecules in an ideal gas in the absence of external 
forces. This correspondence can be better illustrated by scaling the conservation 
equation (2.13). The velocity coordinate is scaled by vi, the fluctuating velocity. The 
collision integral scales as the collision frequency multiplied by the order of 
magnitude of the distribution function : 

a ,ma t+  = O(A/TCij). (2.14) 

The viscous accumulation term scales as 

(2.15) 

There is a factor of d in the denominator because the divergence operator in velocity 
space scales as ( l l v f ) ,  while the viscous deceleration, which is proportional to the 
difference between the particle velocity and its terminal velocity, scales as vL/rvi. 

From (2.14) and (2.15), it can be seen that the viscous term is O(d)  smaller than 
the collisional term, and the collision integral is zero to leading order a t  steady state. 
The molecular distribution function for a gas at  equilibrium is also derived from the 
zero collision integral condition (see Chapman & Cowling 1970, chap. 3), and to 
describe the leading-order dynamics of the suspension we can make use of two results 
derived for multi-component gas mixtures : 

(i) The velocity distribution function of species i is an isotropic Gaussian function 
of the fluctuating velocity ci: 

(2.16) 

Here, is the variance of the Gaussian distribution. The above equation is identical 
to the Maxwell-Boltzmann distribution for the molecules of a gas at  equilibrium, in 
which the velocity variance, &, is expressed as BkT/m,, where T is the gas 
temperature, mi is the mass of a molecule of component i, and Ic is the Boltzmann 
constant. 

(ii) In a gas at equilibrium, the temperatures of the components are equal. By 
analogy, the variances of the two species in the bidisperse suspension are related by 

m1 El = m2 5,. (2.17) 

In a gas, the temperature is specified as a thermodynamic property, but in the 
suspension it is necessary to take into account the small perturbation caused by 
viscous forces to  calculate the variances. The exact form of the perturbation is 
difficult to calculate analytically, and numerical methods have been developed to 
calculate the distribution function for gases that are far from equilibrium (Yen 1984). 
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For systems whose velocity distributions are close to the Maxwell-Boltzmann 
distribution, the perturbation is assumed to be in the form of a polynomial expansion 
in the fluctuating velocities. A perturbation in the form of a Hermite polynomial 
expansion is used in the theory of granular flows (Jenkins 1987). Hermite polynomials 
constitute an orthogonal function space if the inner product is defined with a 
Gaussian weighting function, and a Hermite polynomial expansion simplifies the 
calculation of the moments of the distribution. Keeping all the polynomials gives the 
exact form of the perturbation for small deviations from equilibrium, but t,ypically 
only a few are kept owing to  the complexity of the algebra involved. 

In  this analysis, the distribution function for species i is assumed to be an 
anisotropic Gaussian distribution about its mean velocity : 

(2.18) 

The variances in the horizontal and vertical directions are small perturbations t o  the 
isotropic variance, ti ,  as indicated by (2.16) : 

(2.19a, 6) 
If we substitute the above expressions for the velocity variances into (2.18), expand 
in a Taylor series about u = 0, and retain terms up to O(u),  we get the following 
expression for the velocity distribution function : 

t i r  = & + u t i r ,  t i z  = ti + u5;z.  

(2.20) 

The above expression is identical to a Hermite polynomial expansion that includes 
the linear and quadratic terms. We use the form of the distribution function in (2.18) 
because it simplifies the calculation of the collisional terms by the ensemble 
averaging method developed in $2.4. The parameters in the distribution function are 
calculated from the balance equations for the moments of the distribution. 

2.3. Balance equations 

Balance equations for the following three moments of the fluctuating velocity are 
used to calculate the parameters in the distribution function (2.20) : ( 1 )  mean velocity 
in the vertical direction, ( c i z )  ; (ii) mean-square of the fluctuating velocity, ( c i .  ct) ; 
(iii) mean-square of the horizontal component of the fluctuating velocity, (c ir .  c i r ) .  
The subscript r will henceforth be used t o  denote the projection of the velocity vector 
in the horizontal plane. The balance equations are derived by multiplying the 
conservation equation (2.13) by the velocities and the square of the velocities, and 
integrating over the velocity domain of species i .  This procedure is described in detail 
in Chapman & Cowling (1970, Chap. 3).  The leading-order balance equations a t  
steady state for the moments are 

a (cz) 
-2 - ~ w ; , ( V t , - 2 ) - ( c ~ ) ] + ~ =  0, (2:) at 

(2.21 a )  

(2.21 6) 

(2.21 c) 
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In  the above equations, (3,la.t) is the change of the velocity moments due to collisons 
between particles. There is a factor of u-i in the first term on the right-hand side of 
( 2 . 2 1 ~ ~ )  due to  the scaling of the mean velocity and terminal velocities (see (2.8) and 
(2.9)). The mean-square fluctuating velocities, ( c i )  and ( c f r ) ,  are related to the 
variances of the distribution function in the horizontal and vertical directions, ttr 

(2.22a, b )  

Since collisions between particles are elastic and conserve momentum and energy, 
the collisional rates of change of mean and mean-square velocities satisfy the 
conditions 

(2.23) 

(2.24) 

The momentum balance equation (2.21a) is identical to that used in the kinetic 
theory for a two-component gas mixture (Tham & Gubbins 1971), and in the analysis 
of granular flows (Jenkins & Mancini 1989). However, the treatment of the energy 
balance equation is different from that used in mixture theory in the following 
respects : (i) Usually just one energy conservation equation is written for the average 
temperature of the gas in mixture theory, whereas here, balance equations are 
written for the mean-square velocities for each species in the horizontal and vertical 
directions. This allows us to take into account the anisotropy in the distribution, and 
to calculate the O(u)  corrections to the velocity variances. (ii) In  mixture theory, the 
work done due to the external forces is given by Fi . vi’, where Fi is the external force, 
and vi, the ‘diffusion velocity’ of species i, is uw;, in our case. In the analysis of 
Jenkins & Mancini (1989) for example, the external work is done by an external shear 
force acting on the system, which is independent of the ‘diffusion velocity’. In  our 
system, the leading-order force on the suspension is proportional to vit- 1, the 
difference between the terminal velocity and the mean velocity of the suspension. 
However, it can be seen from (2.21b) that the work done by the drag force is 
proportional to uv;,(vit-2), which is not the product of the external force and the 
diffusion velocity. Owing to the velocity dependence of the force, there is an 
additional contribution to the work done on the particles which is proportional to  the 
product of the O ( u )  correction to the force and the mean velocity of the suspension. 
Therefore, the leading-order non-trivial energy balance equation for the present case 
is different from that used in mixture theory. 

2.4. Collisional change in the velocity moments 
In this section, we use ensemble averaging to derive expressions for the collisional 
rate of change of the velocity moments in a uniform suspension. Consider two 
particles of species i a n d j  (i a n d j  can be 1 or 2 )  whose velocities are in the volumes 
dci about ci and dci about ci respectively. The velocities of the particles are expressed 
in terms of the velocity of the centre of mass of the two particles (the common 
velocity q )  and the difference in velocity between them (w) : 

(2.25u, b )  

At this point, it  is necessary to define a number of coordinate systems to 
characterize the collision. The spherical coordinate system CO has its origin at the 
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B I '  

I 
FIGURE 1. Coordinate systems for calculating collisional rate of change of mean and 

mean-square velocities. 

centre of the particle of species i and its axis in the direction of gravity, as shown in 
figure 1. The magnitude of the relative velocity is in the interval dw about w, and the 
relative velocity vector is in the differential solid angle sinBdBd$ about the 
orientation (8, 4). Here 6 is the azimuthal angle and 4 is the meridional angle in CO. 
The unit vector in the direction of the relative velocity, e,,, and the two unit vectors 
perpendicular to it, e,, and e,,, form a Cartesian coordinate system C1. The relations 
between the unit vectors in the coordinate systems CO and C1 are 

e,, = cos Be, + sin 6 cos $ e, + sin Bsin $ ey. ( 2 . 2 6 ~ )  

e,, = sin q5 e, - cos q5 e,, (2.26b) 

e,, = -sin Be, + cos B cos $ e, + cos Bsin $ ey. ( 2 . 2 6 ~ )  

The particles collide in a time dtt if the centre of the second particle is in the 
cylinder ABCD, whose volume is given by wtdtt. Consider a collision in which 
the impact vector, which is the vector joining the centres of the particles at  the point 
of collision, is in the differential solid angle sin+d$ddy about +, d y  relative to the 
direction of w .  Here $ is the azimuthal angle in the coordinate system C1 which 
varies from 0 to gx, and 7 is the meridional angle which varies from 0 to 2x. The unit 
vector e, is normal to the surface at the point of collision, and e, is the tangent to the 
surface in the plane of the relative velocity, w ,  and the normal, e,. The unit vectors 
e, and e, are related to the unit vectors in C1 as follows: 

en = cos $ewo + sin $ cos y e,, +sin $sin y ew2, (2.27a) 

e, = sin $ e,,, - cos $ cos y e,, - cos $sin dy  e,,. (2.27 b )  

The particles collide with this impact vector in a time dtt if the centre of the second 
cos $sin $ d$ dy dtt. The particle is the region A'B'C'D', whose volume is wt 
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number of collisions between the particles in this specified orientation per unit 
volume in a time dtt is the product of the number densities of the particles having 
velocities ci and cj and the volume of the region A’B’C’D: 

no. of collisions 
volume 

= nifi(ci)njfj(cj)  (~td;~cos$)sin$d$dydc~dc~dtt. (2 .28)  

The collision frequency of a particle of species i is the ratio of (2 .15)  and the 
number density n,. Using ( 2 . 2 )  for the collision time, Tci i ,  the collision frequency, 
scaled by is 

frequency of collisions = v f i (c i )  fj(cj) w cos $sin $ d$ dy dc, dcj. (2 .29 )  
[ X T c i j l  

In  deriving (2 .29 )  we have assumed that the pair probability distribution function for 
two colliding particles is a product of the single particle velocity distribution 
functions. This assumption is valid when the volume fraction of the particles is low, 
and the velocities of colliding particles are not correlated. 

In a collision, the velocity of the centre of the mass remains unchanged, and the 
difference velocities before and after collision are related by 

w = we,, = w(cos$e,+sin$e,), 

w* = w(-ecos$e,+sin$e,). 

( 2 . 3 0 ~ )  

(2.30 b )  

The superscript * is used to denote velocities after collision. In (2 .30b) ,  e is the 
coefficient of restitution. The analysis in $ 2  is confined to systems of elastic particles, 
for which e is 1, and suspensions of inelastic particles are examined in $ 3 .  

From (2.30), the changes in the velocity moments of a particle of species i due to 
a collision wit,h a particle of speciesj are 

m.  
mi (w$-w~) ,  A (C ) - L [ ~ * ( w * - w ) ] ,  ( 2 . 3 1 a , b )  A&iA = ~ wbi + mi ij - 2 m i + m j  

Aij(c,2,) = 2 ---.EL- 
mi + mi mi +m* 

(2.31 c )  

Here Aij(Pi)  is the change in the value of the property Pi of a particle of species i due 
to a collision with a particle of species j. 

The average rate of change of the property, P2(cI), of species i ,  due to collisions with 
particles of species j, is evaluated by multiplying the rate of change of the property 
per collision (2 .31)  by the frequency of collisions between particles of species i a n d j  
(2 .29 ) ,  and integrating this over the velocity space of species i and j and over the 
orientation space of the impact vector: 

-- - 5 1 1 rz A&) fi(cc)fj(cj)w cos $sin $ d+ dy dcj dc,. (2 .32)  at j= lnTct i  C( c, ?l=o $=O 

It can easily be verified that, for an isotropic Gaussian distribution in which the 
variances of the two species are related by ( 2 . 1 7 ) ,  the rates of change of all the 
velocity moments are zero. For the perturbed Gaussian distribution (2 .18 ) ,  however, 
there is a transfer of momentum and energy between the two species due to the 
differences in their mean velocities and velocity variances. This is calculated by 
expressing the pair distribution function fi(ci)fj(cj)  in terms of the common and 
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difference velocities (2 .25) ,  expanding it in a Taylor series about u = 0, and carrying 
out the integrations in (2 .32) .  Note that the Jacobian for the transformation from 
(q, cj )  to (4, w) coordinates is 1. 

There is a change in the mean velocity (c , , )  due to the transfer of momentum to 
particles of species i in collisions with particles of the other species, 3--i, which is 
given by 

(2 .33)  

Here, k = 3 - i ,  and the factor rcI2/rcik appears because of our choice of timescales for 
the parameter u. The collisional transfer of momentum is driven by the difference in 
the mean velocities of the two species, vim - vim, and is directed from the faster to the 
slower species. The printed variables refer to  the perturbations to the velocity 
moments, as indicated in (2 .17)  and (2 .19) .  The transfer rates given by (2 .33)  for the 
two species satisfy the momentum conservation condition (2 .23) .  The factor (tl +t,)i 
appears in the numerator because the collision frequency is proportional to the 
difference velocity w. 

There is a change in the mean-square fluctuating velocity of species i ,  (c : ) ,  due to 
the transfer of energy in collisions with particles of the other species, 3 - i ,  which is 
given by 

where k = 3 - i .  The transfer rates for the two species given by (2 .34)  satisfy the 
energy conservation condition (2 .24) .  The collisional energy transfer is driven by 
mi giz - rn, GZ and m, &. - m, Gr, which are proportional to the difference between the 
average kinetic energies of species i and k in the vertical and horizontal directions 
respectively. The direction of the transfer is from the species having a higher average 
energy to that having a lower average energy, and tends to equalize the average 
energies of the particles of the two species. 

The collisional rate of change of the horizontal component of the fluctuating 
velocity is given by 

(2 .35)  

The last term in (2.35) represents the redistribution of energy in collisions between 
particles of the same species, and is driven by tiz-&, the difference in the velocity 
variances in the horizontal and vertical directions. The first term represents the 
change in energy due to collisions between particles of different species, and consists 
of energy transfers driven by three terms: (i) the difference in the average energies 
of the two species in the horizontal direction mi Eir - m, Gr, which tends to equalize 
the energies of the two species, (ii) the difference in the energies of the horizontal and 
vertical fluctuations tiz + GZ - E, - Gr, which tends to equalize the fluctuating 
energies in the horizontal and vertical directions, and (iii) a contribution proportional 
to the square of the difference in the mean velocities. 
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FIGURE 2. The leading-order velocity variance, non-dimensionalized by vlt ,  as a function of the 
ratio of particle sizes, a, = a2/al .  The densities of the two species are equal and, v1 is 0.001. - .  - .  - .  - ., 
n = 1.5. ~ n = 1.0; =O.5 .  , e  

The collisional transfer rates, (2.33), (2.34) and (2.35), can be substituted into the 
balance equations (2.21) and solved for : (i) the leading-order velocity variance and 
the O(u)  difference in the mean velocities wim-wim,  (ii) the difference in the average 
fluctuation energies of the particles of the two species, m, .L& - m2 [iz and m, [ir -m2 ti,., 
and (iii) the difference in the velocity variance between the horizontal and vertical 
fluctuations Gz - &. We have derived analytical expressions for the O(u) correction 
to the mean velocities, vim, and the leading-order velocity variances, & : 

(2.37) 

Here, m,, n, and y, are m,/m,, n,/n, and ,u.Jp,,, respectively. We have stipulated that 
species 1 is the heavier species, and the mean velocities and velocity variances are 
non-dimensionalized by (uwk) and ( u v x ) ,  respectively. The O( u )  corrections to the 
velocity variances in the vertical and horizontal directions have been calculated 
numerically from the higher-order balance equations. 

Figures 2 and 3 show the variations in the mean-square velocities of particles of 
species 1 due to changes in the size ratio and the number density ratio. In these 
figures the dimensionless parameter, u,, defined as [7,1 n1(4x4)  vlt]-$, is kept 
constant. u1 is similar to the ratio of timescales u defined in (2 .4) ,  but is expressed in 
terms of the properties of species 1 to better illustrate the effect of changes in the size 
ratio. 

Figure 2 is a plot of the velocity variance as a function of the ratio of particle sizes, 
a2/a,. The dimensionless parameter u ,  is 0.001. As the radius of particle 2 is increased 
relative to that of particle 1, the velocity variance first increases, since the particles 
of species 2 become more massive and transfer more momentum and energy to the 
particles of species 1 .  As the radius of particle 2 is further increased, however, the 
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FIGURE 3. The leading-order velocity variance, non-dimensionalized by vl;, as a function of the 
number density ratio, n, = n,/nl. The densities of the two species are equal, and u1 is 0.001. -, 

a = 0 . 7 ;  -.....-., a, =0.9.  a = 0 5 .  _ - _ _ _ _ _  
, c  e . ?  

difference in the terminal velocities that drives the momentum and energy transfers 
decreases, and, the velocity variance decreases. In  this figure, we have only shown 
the variance for the larger species. The variance for the smaller species can be 
calculated using (2.17), i.e. m, 6, = m,g2, and therefore follows similar trends. As the 
ratio of particle radii, a2/a1, approaches 1, the difference in the terminal velocities, 
wUft-vit, is small compared to wUf,. Since the ratio of timescales, u, is proportional to 
u l ( w f t / ( w f t - w J t ) ) ~ ,  u is large even at small u1 and the asymptotic analysis is not valid. 
As a result, the curves have not been extended to az/al = 1. 

Figure 3 is a plot of the velocity variance C1, non-dimensionalixed by (wff) ,  as a 
function of the ratio of number densities n2/n1, with u1 fixed at  0.001. We would 
intuitively expect the velocity variance to increase with increasing n2, due to an 
increase in the tranfer of momentum and energy per particle of species 1. However, 
figure 3 shows that the velocity variance first increases and then decreases. This is 
because the ratio of the leading-order velocity variances is inversely proportional to 
the ratio of the masses of the particles of the two species, and does not depend on the 
ratio of the number densities of the particles (see (2.17)). Thus, the velocity variances 
of the two species are coupled, and a decrease in the velocity variance of species 2, 
due to an increase in its number density, results in a decrease in the velocity variance 
of species 1 as well. 

In  figure 4 the O(u) correct velocity variance, El, and the O(uz) correct radial and 
axial velocity variances, EIr and &, are plotted as functions of the number density 
ratio n2/n1. The size ratio is 0.7 and u1 is 0.001. The O(u2) vertical velocity variance, 
tlZ, shows a significant deviation from the leading-order variance, El, indicating that 
the O(u2) correction to the velocity variance is not small for u greater than about 
0.001. The large magnitude of the O(u2) correction suggests that the asymptotic 
expansion is only accurate for very small values of u. The O(u2) corrections to the 
velocity variances are about 2 4 %  at u1 = and the asymptotic analysis gives 
accurate results for u of this order of magnitude. 

The variances in figures 3 and 4 have not been extended to nJnl = 0 because the 
collision time, 7c12, between collisions of a particle of species 1 with one of species 2, 

21-2 
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FIGURE 4. The isotropic velocity variance, &, correct to O(u), and the velocity variances, tlr and 
tlZ, correct to O(u2), non-dimensionalized by vlt, as a function of the number density ratio n, = 

n, 

n2/n1. The ratio of particle radii a2/a,  is 0.7, and u1 is 0.001. 3 61;-, t'........ 1 7 ,  : 6 11. 

increases as the number of particles of species 2 is decreased, and the condition 
rCij < rVi is no longer valid. 

3. Suspension of inelastic particles 
Inelastic collisions provide an additional mechanism of energy dissipation. In  this 

section, we study the properties of the suspension in the limit where the coefficient 
of elasticity, e, is close to 1,  but the dissipation of energy due to inelastic collisions 
is large compared to that due to viscous drag. In  this limit, the direct effect of the 
inelasticity on the collision dynamics is small, and the elastic-particle collision 
integral is zero t o  leading order. The leading-order distribution functions are 
Gaussian distributions (2.16) whose variances, t1 and t2, are related by (2.17).  Since 
momentum is conserved in inelastic collisions, the momentum balance equations for 
the present case are the same as those for a suspension of elastic particles. We can 
use the same scaling arguments as those used in $62.1 to show that the difference in 
the mean velocities of the two phases is O(u) smaller than the mean velocity of the 
suspension. Equation (2.6) gives the leading-order mean velocity of the suspension. 
The collisional rate of change of mean velocity is given by 

The order of magnitude of the fluctuating velocities differs from that for a 
suspension of elastic particles, since there is a new dissipation mechanism. If the 
fluctuating velocities of the particles are O(vf ) ,  the rate of dissipation of energy due 
to inelastic collisions is 0(6m, vf2/rCU), where 8 is 1 - e2. The rate of energy dissipation 
due to viscous drag is O(miv f2 /~ , , ) .  Therefore, the dissipation rate due to inelastic 
collisions is O ( S / u )  larger than the viscous dissipation rate in the limit 6 % u ,  and the 
analysis in the present section is valid in this limit. In  the energy balance equations 
(2.9), the collisional source of energy scales as mit&(vlm - w;,) /~,~,  which is 
O ( U ~ ~ V ~ / T , ~ )  since the difference in the mean velocities is O(uvk). It can be easily 
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FIGURE 5. The velocity variance of particles of species 1, t1, non-dimensionalized by ul:, m a 
function of ratio of number densities n, = n,/n,, for a suspension of inelastic pa;ticles. The ratio 
of particle radii is 0.7, and the parameter ul, defined as [(1 -e2)f (nl(4na3 vlt7Jf], is 0.0001. The 
variance for e = 1 was calculated by setting u1 = 0.0001 in the solution for elastic particles in $2.  
-, e = 1 ;  , e = 0.95; - . - . - . - . ,  e = 0.85. 

verified that t o  achieve a balance between the collisional source and the inelastic 
dissipation, the fluctuating velocity should be O(u /$ )  smaller than the mean 
velocity. As in $2, v is defined as the ratio of the collision time to  the viscous 
relaxation time. However, the decrease in the magnitude of the velocity fluctuations 
due to inelastic collisions changes the dependence of u on the radius and number 
density of the particles, and (2.5) is replaced by 

u = (7,12/7,1) = d[n, "d;, wt, 7,1]-% 

It can be easily seen that u is proportional to (&Xt  V)-i). Thus, there is an O(S-a (8t V)-i) 
decrease in magnitude of the fluctuating velocity, vl, and an O(&(st V);) increase in 
the magnitude of the difference in the mean velocities of the two species, vfm-vgq, 
due to inelastic collisions. Note that the condition 8 % u is equivalent to S 9 (8t V)-s. 

In the balance equations for the mean-square fluctuating velocities (2.21), the 
energy dissipation due to inelastic collisions is large compared to that due to viscous 
drag. The total energy balance condition for an inelastic suspension is, instead of 
(2.241, 

The first term on the right-hand side of (3.3) is the dissipation of energy due to 
inelastic collisions between particles of species 1 and 2, and the last two terms are due 
to collisions between two particles of species 1 and two particles of species 2,  
respectively. The energy dissipation is calculated using the ensemble averaging 
technique derived in $2.4. The momentum balance equations for the two species, 
(2.21 a ) ,  and the sum of the energy balance equations, (2.21 b), for the two species, are 
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solved t o  calculate the leading-order variance Ei, and the difference in mean velocities 
between the two species. Figure 5 shows the variation in the velocity variance, scaled 
by the terminal velocity of species 1,  with the number density for three values of the 
coefficient of restitution. 

4. Conclusions 
The flow of a bidisperse suspension of solids, settling under gravity at  steady state, 

was analysed in the limit where the time between successive collisions of a particle, 
7,, is small compared to its viscous relaxation time, 7,. A small parameter, u, was 
defined as the ratio of the two timescales T,/T,  and a perturbation analysis was used 
in the limit of small u. The scalings of the velocities, calculated from the momentum 
and energy balance equations, are as follows. The difference in the mean velocities of 
the two species, ~ f , , , - v ~ ~ ,  is O(uvL) where VL is the mean velocity of the suspension, 
and the fluctuating velocity, vt, is O(ub&). Thus, the fluctuating velocity is O(ui) 
smaller than the mean velocity of the suspension, and the difference in the mean 
velocities is O(&) smaller than the fluctuating velocity. Here u is proportional to 
(8t V)-g, and the fluctuating velocity decreases as the volume fraction of the particles 
increases in this limit. 

In the limit 7, < 7,, the accumulation of particles in velocity space due to collisions 
is O ( d )  larger than that due to the viscous drag forces. Therefore, the leading-order 
collisional accumulation is zero a t  steady state, and the leading-order distribution 
function is a Gaussian distribution, which is identical to the distribution of molecular 
velocities in a two-component gas at equilibrium. However, the energy required to 
sustain the fluctuations is provided by the drag force on the particles due to the 
difference between the mean and terminal velocities, and to calculate the velocity 
variances it is necessary to take into account the small effects of the viscous drag. 

Balance equations for the velocity moments were derived using an anisotropic 
Gaussian distribution, which is a small perturbation to the leading-order distribution. 
Analytical expressions for the collisional transfer of momentum and energy between 
the two species, and the redistribution of energy between the horizontal and vertical 
velocity fluctuations, were derived using an ensemble averaging technique developed 
in 52.4. There is a transfer of momentum from the species with a higher mean 
velocity to that with a lower mean velocity, thus tending to equalize the mean 
velocities of the two species. The driving force for a collisional transfer of energy is 
the difference in the average energy per particle, mi (cf), and this transfer is directed 
from the species having higher energy to that having lower energy per particle. There 
is also a transfer of energy between the horizontal and vertical directions, due to 
collisions between particles of the same species, which tends to equalize the average 
energies in the three coordinate directions. 

The velocity variances were calculated correct to O( u 2 )  from the higher-order 
balance equations for the velocity moments. For u of O(O.OOl) ,  the O(u2) correction 
to the vertical velocity variance was found to be comparable to the O(u) isotropic 
velocity variance, indicating that the perturbation series does not converge for this 
value of u. The higher corrections to the velocity variances are small for u less than 
about and the asymptotic analysis is valid for u of this order of magnitude. In 
Kumaran & Koch (1993 b)  we calculate the velocity moments for higher values of u 
using an approximate distribution. 

The magnitude of the fluctuating velocity in a suspension of inelastic particles is 
small compared to that in an equivalent suspension of elastic particles in the limit 
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( 1  - ez)  9 v ,  because the dissipation of energy due to inelastic collisions is large 
compared to that due to viscous drag. In this case, v is proportional to 
[(l -ez)-a(St V)-;], and the limit 1 - e 2  9 u is equivalent to 1 -e2  9 (8t V)-g. The 
leading-order distribution functions of the two species are of the same form as those 
for elastic suspensions. However, the magnitude of the fluctuating velocity is 
O[(l -e2)- i (Xt  V)-i] smaller than that in an elastic suspension, and the difference in 
the mean velocities of the two species is O[(l -e2)i  AS'^ V);] larger than that in an 
elastic suspension. Thus, inelastic collisions could significmtly decrease the 
magnitude of the fluctuating velocity even if the coefficient of restitution is close to 1 .  

The authors thank James T. Jenkins for many helpful discussions. This work was 
supported by grant CTS-885 7565 from the National Science Foundation Particulates 
and Hydraulics Program. 

Appendix. Velocity distribution function for systems with velocity- 
dependent forces 

Derivations of the steady-state velocity distribution function for gas molecules 
invoke the principle of detailed balancing, which states that, at  the molecular level, 
the effect of any collisional interaction is exactly balanced by an inverse interaction 
so that the net effect is zero. The principle of detailed balancing is used to calculate 
the Maxwell-Boltzmann distribution of molecular velocities in a gas at equilibrium, 
and the corrections to the distribution function in a non-equilibrium gas. In the case 
of inelastic systems, it is known that the principle of detailed balancing breaks down 
because energy is not a collisional invariant. We show in this Appendix that this 
principle is not valid for suspensions of elastic particles at steady state when 
the divergence of the forces in velocity space is non-zero. Thus, the distribution 
function for a bidisperse particle-gas suspension at steady state could be very 
different from the Maxwell-Boltzmann distribution when the effect of the drag forces 
is significant, and we cannot use the type of perturbation expansions that are 
developed for small deviations from equilibrium in the kinetic theory of gases. 

The conservation equation for the molecular distribution function is the 
Boltzmann equation, which is derived in chapter 3 of Chapman & Cowling (1970). In 
their chapter 4, the Boltzmann H-theorem is invoked to show that the principle of 
detailed balancing is valid for the system at steady state. This principle is used to 
derive the Maxwell-Boltzmann distribution. The derivations in this Appendix run 
parallel to those in chapters 3 and 4 of Chapman & Cowling, but here we consider a 
two-component system. 

Owing to the presence of velocity-dependent forces, we modify the Boltzmann 
equation (3.1) for particles of species i by including the forces within the divergence 
operator : 

Here the acceleration Ft is a function of the fluctuating particle velocity ci ,  and 
a,fJat is the collision integral, which is the rate of change of the distribution function 
due to collisions between particles. The derivation proceeds by defining the quantity 
H as follows: == dH ~~(l+logfi)--dei. afi 

at 
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The summation in ( A 2 )  is over the species 1 and 2. The rate of change of H ,  
equivalent to (4.1.1) of Chapman & Cowling, is given by 

aj-. a 
- = .[(I + logf,) .L--. ar, ac, (Fi f i ) ]  dc, 
dH 
dt 

As shown, in 554.13 and 4.14 of Chapman & Cowling, the second term in the above 
integral vanishes for spatially uniform suspensions or for suspensions in vessels with 
smooth walls, and the third term vanishes if the distribution function goes to zero 
exponentially at large velocities. The last term, however, does not sum to zero in the 
most general case, and (4.1.4) of Chapman & Cowling has to be modified to take this 
term into account: 

= 1 [ C C slog (g)(f;,fi - f i f j )  k j  dk dc, dcj 
dt 4 i ,  fifj 

The prime is used to indicate the distribution function after collision, and k j  dk is the 
differential collision cross-section. At steady state, the rate of change of H is zero, and 
the above equation reduces to 

The left-hand side of (A 5) is always negative, because log(fifi/f;f;) is always opposite 
in sign to f; f; - fi f,. The right-hand side of (A 5 )  is negative for viscous drag forces. 
and there exists a possible steady-state solution for the distribution function that is 
not a Gaussian. If the force is in the same direction as the particle velocity, however, 
the right-hand side of (A 5) is positive and the left-hand side is negative, indicating 
that there is no possible steady-state solution for the distribution function. This 
agrees with what we would expect intuitively, since a force that acts in the direction 
of velocity increases the energy of the system indefinitely. 

For certain systems, such as the flow of charged particles in a magnetic field, the 
divergence of the force in velocity space is zero even though the forces are velocity 
dependent. The magnetic force on the particles is Fi+ (elm) ci A H where Fi is a 
constant force, H i s  the magnetic field intensity, e and m are the charge and mass of 
an electron respectively and A is the vector cross-product. The divergence of this 
force in velocity space is zero, and, therefore, the principle of detailed balancing is 
valid, as indicated in chapter 18 of Chapman & Cowling. 

The breakdown of the principle of detailed balancing can be explained as follows. 
Particle accumulation is caused by the acceleration of particles by external forces, 
and by the instantaneous change in the particle velocity due to collisions. If the 
external forces on the particles are independent of particle velocit,y, there is no net 
accumulation of particles in a differential volume dc, due to  the forces. Therefore, at 
steady state, the number of particles entering the differential volume dci and the 
number of particles leaving it due to collisions are equal, i.e. the collisions as a whole 
produce no net effect on the distribution function. Under this condition, the 
Boltzmann H-Theorem can be used to show that for every collision in which the 
colliding particles have initial velocities ci and c, and final velocities c; and cj, there 
is an inverse collision between particles with initial velocities c; and c; and final 
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velocities ci and cj, i.e. the effect of every collision is exactly balanced by the effect 
of an inverse collision. If the external force is dependent on particle velocity, 
however, there is a net accumulation of particles due to the force. Therefore, the 
collisional scattering into and out of this differential volume are not equal at  steady 
state. Since the collisional effects are not balanced in a global sense, the principle of 
detailed balancing is not valid for individual collisions between particles. 
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